Cross Language Text Classification via Multi-view Subspace Learning

نویسنده

  • Yuhong Guo
چکیده

Cross language classification is an important task in multilingual learning, aiming for reducing the labeling cost of training a different classification model for each individual language. In this paper we develop a novel subspace co-regularized multi-view learning method for cross language text classification. The empirical study on a set of cross language text classification tasks shows the proposed method consistently outperforms a number of inductive methods, domain adaptation methods, and multi-view learning methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cross Language Text Classification via Subspace Co-regularized Multi-view Learning

In many multilingual text classification problems, the documents in different languages often share the same set of categories. To reduce the labeling cost of training a classification model for each individual language, it is important to transfer the label knowledge gained from one language to another language by conducting cross language classification. In this paper we develop a novel subsp...

متن کامل

A Subspace Learning Framework for Cross-Lingual Sentiment Classification with Partial Parallel Data

Cross-lingual sentiment classification aims to automatically predict sentiment polarity (e.g., positive or negative) of data in a label-scarce target language by exploiting labeled data from a label-rich language. The fundamental challenge of cross-lingual learning stems from a lack of overlap between the feature spaces of the source language data and that of the target language data. To addres...

متن کامل

Image Classification via Sparse Representation and Subspace Alignment

Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...

متن کامل

Semi-Supervised Matrix Completion for Cross-Lingual Text Classification

Cross-lingual text classification is the task of assigning labels to observed documents in a label-scarce target language domain by using a prediction model trained with labeled documents from a label-rich source language domain. Cross-lingual text classification is popularly studied in natural language processing area to reduce the expensive manual annotation effort required in the target lang...

متن کامل

Online Bayesian Max-Margin Subspace Multi-View Learning

Last decades have witnessed a number of studies devoted to multi-view learning algorithms, however, few efforts have been made to handle online multi-view learning scenarios. In this paper, we propose an online Bayesian multi-view learning algorithm to learn predictive subspace with max-margin principle. Specifically, we first define the latent margin loss for classification in the subspace, an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012